Sabtu, 11 Juni 2011

Sejarah Teori Himpunan

Matematikawan telah menggunakan himpunan sejak awal subjek. Misalnya, ahli matematika Yunani mendefinisikan lingkaran sebagai himpunan poin pada jarak r tetap dari titik tetap P. Namun, konsep 'himpunan tak terhingga' & terbatas 'himpunan menghindari ahli matematika dan filsuf selama berabad-abad. Misalnya, pikiran Hindu dipahami tak terbatas dalam mereka Ishavasy teks kitab suci-opanishad sebagai berikut: "Keseluruhan ada di sana. Keseluruhan berada di sini. Dari lubang imanates keseluruhan. Menyingkirkan keseluruhan dari keseluruhan, apa tersisa masih satu Utuh”. Phythagoras (~ 585-500 SM), seorang matematikawan Yunani, berhubungan baik dan jahat dengan terbatas dan tidak terbatas, masing-masing. Aristoteles (384-322 SM) mengatakan, "tak terbatas tidak sempurna, belum selesai dan karena itu, tak terpikirkan, itu tak berbentuk dan bingung." Kaisar Romawi dan filsuf Marcus Aqarchus (121-180 M) mengatakan tak terhingga adalah sebuah teluk yg tak dpt diduga, di mana segala sesuatu lenyap "filsuf. Inggris Thomas Hobbes (1588-1679) berkata," Ketika kita mengatakan sesuatu adalah tak terbatas, kami hanya menandakan bahwa kita tidak bisa hamil berakhir dan batas-batas hal yang bernama ".

Ahli matematika bekerja, serta jalan, jarang berkaitan dengan pertanyaan unusal: apa angka? Namun upaya untuk menjawab pertanyaan ini justru telah mendorong banyak pekerjaan oleh matematikawan dan filsuf di dasar matematika selama seratus tahun terakhir. Karakterisasi bilangan bulat, bilangan rasional dan bilangan real telah menjadi masalah klasik pusat untuk penelitian dari Weierstrass, Dedekind, Kronecker, Frege, Peano, Russel, Whitehead, Brouwer, dan lain-lain. Peneliti dari Georg Cantor sekitar 1870 dalam teori dengan rangkaian tanpa batas dan topik terkait analisis memberikan arah baru bagi perkembangan teori himpunan. Cantor, yang biasanya dianggap sebagai pendiri teori himpunan sebagai suatu disiplin matematika, dipimpin oleh karyanya menjadi pertimbangan himpunan tak terbatas atau kelas karakter sewenang-wenang.

Namun, hasil Cantor tidak segera diterima oleh orang-orang sejamannya. Juga, ditemukan bahwa definisi tentang menetapkan mengarah ke kontradiksi dan paradoks logis. Yang paling terkenal di kalangan ini diberikan pada 1918 oleh Bertrand Russell (1872-1970), sekarang dikenal sebagai's paradoks Russell.

Dalam upaya untuk menyelesaikan paradoks ini, reaksi pertama matematikawan adalah untuk 'axiomatize' Teori himpunan intuitif's Cantor. Axiomatization berarti sebagai berikut: dimulai dengan satu himpunan pernyataan jelas disebut aksioma, kebenaran yang diasumsikan, seseorang dapat menyimpulkan semua sisa proposisi teori dari aksioma menggunakan aksioma inferensi logis. Russell dan Alfred North Whitehead (1861-1974) pada tahun 1903 mengusulkan teori aksiomatik himpunan dalam tiga-volume kerja mereka yang disebut Principia Matematikawan merasa canggung untuk digunakan.Sebuah Teori himpunan aksiomatik yang dapat dikerjakan dan logistik sepenuhnya diberikan pada tahun 1908 oleh Ernst Zermello (1871-1953). wa ini meningkat pada tahun 1921 oleh Fraenkel A. Ibrahim (1891-1965) dan T. Skolem (1887-1963) dan sekarang dikenal sebagai 'Zermello-Frankel (ZF) teori aksiomatik-himpunan.

Sumber :

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Beginnings_of_set_theory.html
http://en.wikipedia.org/wiki/Set_theory
http://www.mathresource.iitb.ac.in/project/history.htm
http://stanford.library.usyd.edu.au/entries/set-theory/

Tidak ada komentar:

Poskan Komentar