Sabtu, 11 Juni 2011

Aksioma Matematika

Kata aksioma berasal dari Bahasa Yunani αξιωμα (axioma), yang berarti dianggap berharga atau sesuai atau dianggap terbukti dengan sendirinya. Kata ini berasal dari αξιοειν (axioein), yang berarti dianggap berharga, yang kemudian berasal dari αξιος (axios), yang berarti berharga. Di antara banyak filsuf Yunani, suatu aksioma adalah suatu pernyataan yang bisa dilihat kebenarannya tanpa perlu adanya bukti. Kata aksioma juga dimengerti dalam matematika. Akan tetapi, aksioma dalam matematika bukan berarti proposisi yang terbukti dengan sendirinya. Melainkan, suatu titik awal dari sistem logika. Misalnya, 1+1=2. Nama lain dari aksioma adalah postulat. Suatu aksioma adalah basis dari sistem logika formal yang bersama-sama dengan aturan inferensi mendefinisikan logika.

Sumber :
http://id.wikipedia.org/wiki/Aksioma

Sejarah Teori Grup

Teori grup adalah abstraksi gagasan yang umum untuk sejumlah bidang utama yang sedang dipelajari dasarnya secara bersamaan.
Tiga bidang utama yang menimbulkan teori grup adalah:
(1) geometri pada awal abad 19,
(2) teori bilangan pada akhir abad ke 18,
(3) teori persamaan aljabar pada akhir abad ke 18 yang mengarah ke studi tentang permutasi.

(1) Geometri telah dipelajari untuk waktu yang sangat lama sehingga wajar untuk bertanya apa yang terjadi pada geometri pada awal abad 19 yang memberikan kontribusi pada peningkatan konsep kelompok. Geometri telah mulai kehilangan 'metrik' nya karakter dengan geometri proyektif dan non-euclidean sedang dipelajari. Juga gerakan untuk belajar geometri dalam dimensi n mengarah ke abstraksi dalam geometri itu sendiri. Perbedaan antara dan kejadian geometri metrik berasal dari karya Monge , muridnya Carnot dan mungkin yang paling penting pekerjaan Poncelet. Non-euclidean geometri dipelajari oleh Lambert , Gauss ,Lobachevsky dan János Bolyai antara lain.
Möbius pada tahun 1827, meskipun ia benar-benar menyadari konsep kelompok, mulai mengklasifikasikan geometri menggunakan fakta bahwa geometri tertentu studi sifat invarian bawah kelompok tertentu. Steiner pada tahun 1832 mempelajari pengertian geometri sintetis yang akhirnya menjadi bagian dari penelitian kelompok transformasi.

(2) Tahun 1761 Euler belajar aritmatika modular. Secara khusus ia memeriksa sisa kekuasaan dari modulo n nomor. Meskipun Euler pekerjaan ', tentu saja, tidak dinyatakan dalam istilah teoritis kelompok dia tidak memberikan contoh penguraian kelompok abelian ke cohimpunans dari sebuah subkelompok. Dia juga membuktikan sebuah kasus khusus dari urutan subkelompok menjadi pembagi dari tatanan kelompok.
Gauss pada tahun 1801 adalah untuk mengambil Euler pekerjaan 'lebih jauh dan memberikan cukup banyak bekerja pada aritmatika modular yang berjumlah cukup banyak teori kelompok abelian. Dia memeriksa perintah elemen dan membuktikan (meskipun tidak dalam notasi ini) bahwa ada sub untuk himpunaniap nomor membagi urutan grup siklik. Gauss juga diperiksa kelompok abelian lainnya. Dia memandang bentuk kuadrat biner
ax 2 + 2 bxy + cy 2 di mana a, b, c adalah bilangan bulat.
Gauss memeriksa perilaku bentuk yang transformasi dan substitusi. Dia partisi bentuk ke dalam kelas dan kemudian menentukan komposisi di kelas. Gaussmembuktikan bahwa urutan komposisi tiga bentuk adalah material begitu, dalam bahasa modern, hukum asosiatif berlaku. Bahkan Gauss memiliki kelompok abelian terbatas dan kemudian (tahun 1869).

(3) Permutasi pertama kali dipelajari oleh Lagrange dalam makalahnya 1770 pada teori persamaan aljabar. Lagrange 's objek utama adalah untuk mengetahui mengapa dan quartic persamaan kubik dapat diselesaikan secara aljabar. Dalam mempelajari kubik, misalnya, Lagrange mengasumsikan akar dari persamaan kubik yang diberikan adalah x',''x dan x'''. Kemudian, mengambil 1, w, w^2 sebagai akar kubus persatuan, ia memeriksa ekspresi
R = x '+ wx''+ w^2 x'''
dan catatan yang dibutuhkan hanya dua nilai yang berbeda di bawah enam permutasi dari akar x ', x'', x'''. Meskipun awal kelompok teori permutasi dapat dilihat dalam karya ini, Lagrange tidak pernah composes permutasi nya sehingga dalam beberapa hal tidak pernah membahas kelompok sama sekali.

Orang pertama yang mengklaim bahwa persamaan derajat 5 tidak bisa diselesaikan secara aljabar adalah Ruffini . Pada tahun 1799 ia menerbitkan karya yang tujuannya adalah untuk menunjukkan hal tdk dpt memecahkan persamaan quintic umum. Ruffini karya 'didasarkan pada bahwa dari Lagrange tetapi Ruffini memperkenalkan kelompok permutasi. Ini dia sebut permutasi dan secara eksplisit menggunakan properti penutupan (hukum asosiatif selalu berlaku untuk permutasi). Ruffini membagi permutazione ke dalam jenis, permutasi semplice yaitu yang merupakan grup siklik dalam notasi modern, dan composta permutasi yang kelompok-kelompok non-siklik.
Permutasi composta The Ruffini terbagi menjadi tiga jenis yang dalam notasi saat ini adalah kelompok intransitif, kelompok imprimitive transitif dan kelompok primitif transitif.

Bukti Ruffini dari hal tersebut mengecewakan dengan kurangnya reaksi terhadapnya, kertas Ruffini diterbitkan bukti lebih lanjut. Dalam sebuah kertas 1802 ia menunjukkan bahwa kelompok permutasi dikaitkan dengan sebuah persamaan tereduksi transitif mengambil pemahaman dengan baik di luar itu dari Lagrange .

Cauchy memainkan peran utama dalam mengembangkan teori permutasi. kertas pertamanya pada subyek tersebut adalah pada tahun 1815 tetapi pada tahap iniCauchy dimotivasi oleh permutasi dari akar persamaan. Namun, pada tahun 1844, Cauchy menerbitkan karya besar yang membentuk teori permutasi sebagai subyek di dalam dirinya sendiri. Dia memperkenalkan notasi kekuasaan, positif dan negatif, permutasi (dengan kekuatan 0 memberikan permutasi identitas), mendefinisikan urutan dari suatu permutasi, memperkenalkan notasi siklus dan menggunakan istilah Systeme des conjuguées substitusi grup. Cauchy panggilan dua permutasi sama jika mereka memiliki struktur siklus yang sama dan membuktikan bahwa ini adalah sama dengan permutasi yang konjugat.

Abel , pada tahun 1824, memberikan bukti diterima pertama dari hal tdk dpt mencairkan dari quintic, dan ia menggunakan ide-ide yang ada di permutasi dari akar tetapi sedikit baru dalam perkembangan teori grup.

Galois tahun 1831 adalah yang pertama untuk benar-benar memahami bahwa solusi dari suatu persamaan aljabar adalah terkait dengan struktur kelompok le Groupe permutasi yang berkaitan dengan persamaan. Dengan 1832 Galois telah menemukan bahwa sub kelompok khusus (sekarang disebut subkelompok normal) yang mendasar. Dia menyebut kelompok dekomposisi ke dalam cohimpunans dari sub dekomposisi yang tepat jika hak dan dekomposisi cohimpunan kiri bersamaan. Galois kemudian menunjukkan bahwa abelian sederhana kelompok non-order terkecil memiliki urutan 60.

Pekerjaan Galois tidak diketahui sampai Liouville menerbitkan makalah Galois pada tahun 1846. Liouville melihat dengan jelas hubungan antara teori permutasi Cauchy dan pekerjaan Galois. Namun Liouville gagal untuk memahami bahwa pentingnya Galois bekerja terletak pada konsep kelompok.

Betti mulai pada tahun 1851 menerbitkan karya yang berhubungan teori permutasi dan teori persamaan. Bahkan Betti adalah yang pertama untuk membuktikan bahwa Galois 'kelompok yang terkait dengan persamaan sebenarnya sekelompok permutasi dalam pengertian modern. Serret menerbitkan sebuah pekerjaan penting membahas Galois 'kerja, masih tanpa melihat pentingnya konsep kelompok.

Jordan dalam makalah dari 1869 dan 1870 menunjukkan 1865 bahwa ia menyadari pentingnya kelompok permutasi. Ia mendefinisikan isomorfisma kelompok permutasi dan membuktikan Jordan - Pemegang teorema untuk kelompok permutasi. Holder adalah untuk membuktikan dalam konteks kelompok abstrak pada tahun 1889.

Klein mengusulkan Program Erlangen pada tahun 1872 yang merupakan teori klasifikasi kelompok geometri. Kelompok tentu menjadi tengah panggung dalam matematika.
Mungkin perkembangan yang paling luar biasa datang bahkan sebelum Betti. Hal ini disebabkan bahasa Inggris matematikawan Cayley . Pada awal 1849 Cayley menerbitkan kertas menghubungkan ide-idenya pada permutasi Cauchy. Pada tahun 1854 Cayley menulis dua makalah yang luar biasa untuk wawasan mereka memiliki kelompok abstrak. Pada waktu itu dikenal kelompok hanya itu kelompok permutasi dan bahkan ini adalah daerah baru secara radikal, namun Cayley mendefinisikan sebuah kelompok abstrak dan memberikan tabel untuk menampilkan perkalian kelompok. Dia memberikan Cayley tabel dari beberapa kelompok permutasi khusus tetapi, jauh lebih signifikan untuk pengenalan konsep grup abstrak, dia menyadari bahwa matriks dan quaternions adalah kelompok.

Cayley makalah tentang 1854 sangat jauh di depan waktu mereka bahwa mereka memiliki dampak yang kecil. Namun ketika Cayley kembali ke topik pada tahun 1878 dengan empat makalah tentang kelompok, salah satu dari mereka yang disebut Teori kelompok, waktu yang tepat untuk konsep abstrak kelompok bergerak menuju pusat penyelidikan matematika. Cayley terbukti, di antara hasil lainnya, bahwa himpunaniap kelompok hingga dapat direpresentasikan sebagai suatu grup permutasi. Cayley karya diminta Hölder, pada tahun 1893, untuk menyelidiki kelompok order p 3, pq 2, PQR dan p 4.
Frobenius dan Netto (mahasiswa Kronecker ) membawa teori kelompok maju. Sejauh konsep abstrak yang bersangkutan, penyumbang utama berikutnya adalah Von Dyck. Von Dyck , yang telah memperoleh gelar doktor di bawah Klein 'supervisi kemudian menjadi asisten Klein. Von Dyck , dengan kertas fundamental pada tahun 1882 dan 1883, dibangun gratis kelompok dan definisi kelompok abstrak dalam hal generator dan hubungan.

Teori grup benar-benar datang dari umur dengan buku oleh Burnside Teori kelompok order hingga diterbitkan pada tahun 1897. Kedua volume aljabar buku oleh Heinrich Weber (seorang mahasiswa Dedekind ) Lehrbuch der Aljabar diterbitkan pada tahun 1895 dan 1896 menjadi teks standar. Buku-buku ini mempengaruhi generasi berikutnya matematikawan membawa teori grup ke mungkin yang utama sebagian besar teori matematika abad ke 20.

Sumber :
http://www-history.mcs.st-and.ac.uk/HistTopics/Development_group_theory.html

Paradoks Matematika

Matematikawan selalu menghadapi masalah karena mereka memperluas pengetahuan mereka tentang bidang mereka. Sebagian besar masalah dapat diselesaikan. Namun, beberapa tampaknya tidak ada solusi dan bahkan dapat menantang matematika, itulah sebabnya mereka selalu menimbulkan masalah seperti matematika. Ini dikenal sebagai paradoks, yang pernyataan yang tampaknya bertentangan sendiri atau muncul tidak logis, tapi tetap bisa jadi benar. Contohnya adalah berkata, "Aku selalu berbohong." Jika Anda berbohong, Anda mengatakan yang sebenarnya, tetapi jika Anda mengatakan yang sebenarnya, Anda berbohong. Paradoks Zeno dengan tak terhingga, dari Cantor dan Russell dengan teori himpunan, dan paradoks kembar dalam fisika relativitas telah menciptakan masalah dan argumen untuk matematikawan, serta memaksa mereka untuk berpikir tentang subyek matematika dengan cara yang berbeda dari sebelumnya.
Zeno, filsuf Yunani yang tinggal di abad kelima SM, menciptakan beberapa paradoks untuk menunjukkan gagasan ruang dan waktu yang terpisah, dan bahwa dengan membagi mereka satu datang ke banyak kontradiksi. Dua dari beberapa paradoks yang disajikan contoh kontradiksi tersebut.

Yang pertama menyatakan bahwa kura-kura dan pelari cepat Achilles yang akan ras, dan bahwa kura-kura akan diberikan kepala mulai. Zeno mengatakan kepada Achilles bahwa jika ingin mengalahkan kura-kura itu, ia pertama kali harus mengejar ketinggalan dengan itu, tetapi untuk melakukan itu ia pertama kali harus menutupi himpunanengah jarak antara mereka. Kemudian, Zeno mengatakan bahwa himpunanelah Achilles tidak membuat himpunanengah dari jarak asli antara dia dan kura-kura itu, kura-kura akan telah bergerak maju, menciptakan kesenjangan baru antara keduanya. Kemudian Achilles harus menutup himpunanengah dari kesenjangan ini baru sebelum penangkapan kura-kura. Namun, begitu ia menutup himpunanengah dari kesenjangan ini baru, kura-kura akan pindah lagi dan menciptakan kesenjangan baru lagi. Ini berarti bahwa Achilles terus akan menutupi himpunanengah jarak celah, hanya untuk menemukan bahwa ia harus menutupi himpunanengah jarak celah baru. Zeno menyimpulkan bahwa selama kura-kura memiliki kepala mulai, Achilles tidak akan pernah bisa menangkapnya karena dia akan selalu meliputi jarak terbatas dalam urutan interval waktu tak terbatas.

Paradoks kedua mempelajari sebuah panah dalam penerbangan. Zeno mengatakan bahwa jika Anda mulai untuk memecah waktu penerbangan ke dan kecil bertahap, maka Anda dapat memeriksa panah pada suatu saat tertentu, dan pada saat itu panah akan bergerak. Dia melanjutkan dengan mengatakan bahwa jika waktu adalah terdiri dari instants, maka panah tidak pernah bergerak karena pada suatu instan tertentu panah berada pada titik di ruang angkasa tapi tidak dalam gerak (Katz 57).

Paradoks Zeno menciptakan masalah bagi matematikawan karena mereka meneliti gagasan tak terhingga dan infinitesimals dalam ruang terbatas. Aristoteles adalah orang pertama yang mencoba menyangkal pernyataan ini, mengklaim bahwa dalam contoh Achilles, "sebuah objek terbatas tidak bisa datang dalam kontak dengan hal-hal yang secara kuantitatif tak terbatas," yang berarti dibagi-tak terbatas waktu tidak akan mempengaruhi runner. Dalam masalah panah Aristoteles mengatakan waktu yang tidak terdiri dari instants terpisahkan, yang anggapan Zeno, dan bahwa meskipun panah mungkin tidak bergerak pada suatu saat, gerak tidak didefinisikan pada instants tapi selama jangka waktu tertentu (Katz 56 - 7). Meskipun demikian, karena tak terhingga tidak memiliki nilai yang nyata dan tidak nyata secara matematis, selalu ada banyak kontroversi di sekitarnya.

Paradoks Zeno menyebabkan matematikawan berpikir hati-hati tentang konsep infinity dan infinitesimals dan tidak membuat asumsi tentang mereka. Dalam sebuah kuliah tentang Pythagoras dan ilmu Pythagoras dengan Dr Shirley kita belajar bahwa infinitesimals menciptakan masalah bagi orang Yunani. Ilmu Pythagoras ditemui krisis besar pertama dalam matematika ketika mereka menemukan akar kuadrat dari 2 ketika bekerja dengan segitiga. Mereka menganggap semua segitiga siku-siku akan memiliki panjang terbatas, dan terkejut ketika mereka menemukan sebuah segitiga 45-45-90, yang memiliki akar kuadrat dari 2 sebagai panjang sisi miring.

Penelitian infinite Zeno sangat penting untuk matematika karena membantu memimpin perkembangan besar dalam kalkulus. Batas menemukan pendekatan fungsi sebagai mendekati tak terbatas, dan dalam Shirley kuliah Dr pada kalkulus kita belajar itu adalah batas yang diselesaikan krisis kedua dalam matematika tentang bagaimana menafsirkan sebuah "ekstra" dx dalam masalah derivatif. Selanjutnya, di tahun 1600-an Leibniz menjadi terganggu dengan menggunakan nya infinitesimals dalam diferensiasi, dan memutuskan untuk membenarkan penggunaan mereka. Walaupun untuk Leibniz itu tidak pernah benar-benar penting maupun tidak infinitesimals ada, ia menemukan bahwa jika rasio tertentu adalah benar ketika kuantitas terbatas, maka rasio yang sama akan berlaku ketika berhadapan dengan batas-batas dan nilai-nilai yang tak terbatas. Teknik manipulasi menjadi sangat berguna untuk Johann dan Jakob Bernoulli yang menerima infinitesimals sebagai entitas matematika dan menggunakannya untuk membuat penemuan penting dalam kalkulus dan aplikasi nya (Katz 530-1).

Paradoks yang diciptakan oleh Cantor di paruh kedua abad ke 19 mencakup konsep kardinalitas dan hubungannya dengan Teori himpunan (Katz 734). Kardinalitas pada dasarnya menjelaskan berapa banyak nomor dalam satu himpunan, karena himpunan terbatas itu adalah yang sederhana seperti menghitung, tetapi himpunan yang tak terbatas tidak dapat memiliki kardinalitas yang dapat diwakili oleh seluruh nomor. Ia menemukan bahwa jika anggota suatu himpunan tak terhingga dapat dimasukkan ke dalam satu-ke-satu korespondensi dengan satu sama lain, tanpa meninggalkan angka tambahan di himpunan baik, maka dua himpunan memiliki kardinalitas yang sama. Satu-ke-satu korespondensi berarti bahwa untuk himpunaniap anggota dalam satu himpunan, ada anggota yang sesuai pada himpunan kedua. Sebagai contoh, dalam sebuah e-mail dengan profesor saya, Shirley Dr mencatat bahwa himpunan bilangan bulat positif dan himpunan kuadrat sempurna keduanya terbatas dan memiliki hubungan n  n2 untuk setiap anggota dari himpunan, yang berarti mereka memiliki satu-ke-satu korespondensi. Cantor membuktikan bahwa himpunan bilangan real memiliki kardinalitas lebih besar dari himpunan bilangan bulat, paradoks berarti bahwa himpunan tak terhingga dari bilangan real adalah "lebih besar" dari himpunan tak terhingga bilangan bulat. Secara umum, paradoks Cantor dimulai dengan menyatakan bahwa himpunan semua himpunan (sebut saja himpunan B) adalah kekuatannya sendiri himpunan, dimana himpunan daya adalah himpunan semua subhimpunan dari sebuah himpunan A. Power himpunan selalu lebih besar daripada himpunan yang terkait dengan mereka (Weisstein, "Power Himpunan" 1). Paradoksnya menyimpulkan yang diberikan himpunan B, kardinalitas himpunan B harus lebih besar dari dirinya sendiri. Untuk memahami paradoks, kita harus mempertimbangkan Teorema Cantor, yang menyatakan bahwa kardinalitas himpunan lebih rendah dari kardinalitas dari semua himpunan bagian perusahaan (Weisstein, "Cantori Teorema 1). Paradoksnya adalah bahwa jika himpunan B adalah himpunan semua himpunan, maka kardinalitas subhimpunan dari B akan lebih besar dari B himpunan, namun kardinalitas himpunan B harus sama karena himpunan B dan subhimpunan dari B yang sama (Weisstein, Paradoks 1 Cantor).

Paradoks Russell, ditemukan pada awal abad ke-20, memberikan pandangan bahkan lebih umum dari paradoks teori himpunan ditemukan oleh Cantor. Ini menyatakan bahwa R adalah himpunan semua himpunan yang tidak menjadi anggota dari diri mereka sendiri, yang berarti bahwa semua himpunan dalam R tidak mengandung diri mereka sebagai elemen. Pertanyaannya kemudian menjadi, apakah R mengandung dirinya sebagai elemen? Jika kita menganggap bahwa R tidak mengandung sendiri, kemudian oleh R definisi tidak dapat berisi itu sendiri dan sebaliknya. Masalahnya adalah yang paling sering diberikan sebagai paradoks tukang cukur. Misalkan di kota kecil hanya ada satu tukang cukur yang didefinisikan sebagai orang yang mencukur semua orang yang tidak bercukur sendiri. Lalu pertanyaannya adalah "yang mencukur si tukang cukur?" Jika tukang cukur tidak mencukur dirinya sendiri, maka ia tidak menurut definisi. Jika tukang cukur tidak mencukur dirinya sendiri, maka dengan definisi yang dia lakukan (Russell Paradox 3).

Paradoks Cantor dan Russell sangat penting untuk bidang teori himpunan karena mereka disebabkan matematikawan untuk memeriksa asumsi mereka buat sebelumnya. Paradoks ini menunjukkan bahwa teori himpunan pada waktu itu (banyak yang dirancang oleh Cantor) memiliki banyak inkonsistensi karena banyak dari itu murni intuitif dan tidak didasarkan pada semua jenis aksioma atau bukti. Matematikawan ini dipaksa untuk merumuskan sebuah cara untuk membuat teori mengatur lebih konsisten dan untuk memberikan pembatasan yang jelas. Pada 1900-an Ernst Zermelo menyusun tujuh aksioma yang memberikan aturan yang jelas untuk teori himpunan (Katz 809-11). Salah satunya, aksioma pemisahan (atau keteraturan) dihindari dan Russell paradoks Cantori dengan melarang diri menelan himpunan ("Russell's Paradox" 1). Paradoks ini sangat penting bagi perkembangan teori himpunan karena mereka menyatakan perlunya aturan, seperti dalam aljabar atau geometri.

Meskipun paradoks yang mengganggu dan membingungkan oleh alam, mereka tetap menjadi penting untuk matematika di mengidentifikasi masalah dan inkonsistensi dalam matematika sepanjang sejarah. Selain itu, dengan menantang pemikiran waktu, paradoks dapat menyebabkan lebih banyak penemuan yang brilian bahkan dalam matematika. Jelas, paradoks telah penting bagi matematika, dan disiplin mungkin tidak berada di tempat seperti sekarang ini tanpa mereka.

Sumber :
http://tiger.towson.edu/~gstiff1/paradoxpaper.htm

Sejarah Lingkaran

Lingkaran sudah ada sejak jaman prasejarah. Penemuan roda adalah penemuan mendasar dari sifat lingkaran. Orang-orang Yunani menganggap Mesir sebagai penemu geometri. Juru tulis Ahmes, penulis dari papirus Rhind, memberikan aturan untuk menentukan area dari sebuah lingkaran yang sesuai dengan π = 256 / 81 atau sekitar 3,16.

Teorema pertama yang berhubungan dengan lingkaran yang dikaitkan dengan Thales sekitar 650 SM. Buku III dari Euclid 's Elements berurusan dengan sifat lingkaran dan masalah inscribing dan escribing poligon.

Salah satu masalah matematika Yunani adalah masalah menemukan persegi dengan wilayah yang sama sebagai sebuah lingkaran yang diberikan. Beberapa 'kurva terkenal dalam tumpukan pertama kali dipelajari dalam upaya untuk memecahkan masalah ini. Anaxagoras di 450 SM adalah matematikawan recored pertama untuk studi masalah ini.

Masalah untuk menemukan luas lingkaran menyebabkan integrasi. Untuk lingkaran dengan rumus yang diberikan di atas wilayah ini π^2 dan panjang kurva adalah suatu 2π.
Pedal lingkaran adalah cardioid jika titik pedal diambil pada lingkar dan merupakan limacon jika titik pedal bukan pada keliling.

kaustik dari sebuah lingkaran dengan titik bersinar di keliling adalah cardioid, sedangkan bila sinar sejajar maka kaustik adalah nephroid .

Apollonius, pada sekitar 240 SM, efektif menunjukkan bahwa persamaan r bipolar = kr 'merupakan sistem lingkaran koaksial sebagai k bervariasi. Dalam hal persamaan bipolar mr^2 + nr^2 = c^2 merupakan sebuah lingkaran yang pusatnya membagi ruas garis antara dua titik tetap dari sistem dalam rasio n ke m.

Sumber :
http://www-history.mcs.st-and.ac.uk/Curves/Circle.html

Sejarah Parabola

Parabola dipelajari oleh Menaechmus yang merupakan murid dari Plato dan Eudoxus . Ia berusaha untuk menduplikasi kubus, yaitu untuk mencari sisi kubus yang memiliki volume dua kali lipat dari sebuah kubus yang diberikan. Oleh karena itu ia berusaha untuk memecahkan x^3 = 2 dengan metode geometri.

Bahkan metode geometris konstruksi penggaris dan kompas tidak bisa memecahkan ini (tapi Menaechmus tidak tahu ini). Menaechmus dipecahkan itu dengan mencari perpotongan dari dua parabola x^2 = y dan y^2 = 2 x.

Euclid menulis tentang parabola dan itu diberi nama yang sekarang oleh Apollonius. Fokus dan direktori dari parabola itu dikemukakan oleh Pappus .
Pascal mengemukakan parabola sebagai proyeksi lingkaran dan Galileo menunjukkan bahwa proyektil mengikuti jalur parabola.

Gregory dan Newton mengemukakan sebagai properti dari sebuah parabola yang membawa sinar sejajar cahaya untuk fokus.

Pedal parabola dengan titik sebagai titik pedal adalah cissoid . Pedal dari parabola dengan fokus sebagai pedal titik adalah garis lurus. Dengan kaki pedal directrix sebagai titik itu adalah hak strophoid (sebuah strophoid miring untuk himpunaniap titik lain dari directrix). Kurva pedal saat pedal titik gambar fokus dalam directrix adalah Trisectrix dari Maclaurin .

Evolute parabola adalah parabola Neile itu . Dari titik di atas tiga normals evolute dapat ditarik untuk parabola, sementara hanya satu normal dapat ditarik untuk parabola dari titik bawah evolute. Jika fokus parabola diambil sebagai pusat inversi, parabola membalikkan ke cardioid . Jika simpul parabola diambil sebagai pusat inversi, parabola membalikkan keCissoid dari Diocles . Para kaustik dari parabola dengan sinar tegak lurus terhadap sumbu parabola adalah Tschirnhaus's Cubic .

Sumber :

http://www-history.mcs.st-and.ac.uk/Curves/Parabola.html
http://xsquared.wikispaces.com/Parabola+History

Sejarah Struktur Aljabar

Sejarah aljabar dimulai di Mesir kuno dan Babilonia, di mana orang belajar untuk memecahkan linear (ax = b) dan quadratic (ax^2 + bx = c) persamaan, sertapersamaan tak tentu seperti x^2 + y^2 = z^2, dimana beberapa diketahui terlibat. Orang-orang Babilonia kuno dapat memecahkan persamaan kuadrat dengan prosedur yang sama. Mereka juga bisa memecahkan beberapa persamaan tak tentu.

Para matematikawan Aleksandria Hero dari Alexandria dan Diophantus melanjutkan tradisi Mesir dan Babel, tapi Diophantus buku Arithmetica ada di tingkat yang jauh lebih tinggi dan memberikan solusi mengejutkan banyak persamaan tak tentu sulit. Pengetahuan kuno solusi persamaan pada gilirannya menemukan rumah awal di dunia Islam, di mana ia dikenal sebagai "ilmu restorasi dan balancing." (Kata bahasa Arab untuk restorasi, al-jabru, adalah akar kata aljabar). Pada abad ke-9, matematikawan Arab al-Khawarizmi menulis salah satu aljabar Arab pertama, uraian sistematis dari teori dasar persamaan, dengan kedua contoh dan bukti. Pada akhir abad ke-9, ahli matematika Mesir Abu Kamil telah menyatakan dan membuktikan hukum dasar dan identitas dari aljabar dan memecahkan masalah-masalah rumit seperti menemukan x, y, dan z sehingga x + y + z = 10, x^2 + y^2 = z^2, dan xz = y^2.

Peradaban kuno menuliskan ekspresi aljabar hanya menggunakan singkatan sesekali, tapi oleh matematikawan abad pertengahan Islam mampu berbicara tentang sewenang-wenang kekuasaan tinggi tidak diketahui x, dan bekerja di luar aljabar dasar polinomial (tanpa belum menggunakan simbolisme modern). Ini termasuk kemampuan untuk mengalikan, membagi, dan menemukan akar kuadrat polinomial serta pengetahuan tentang-teorema binomial. Matematikawan Persia, astronom, dan penyair Omar Khayyam menunjukkan bagaimana mengekspresikan akar persamaan kubik dengan segmen garis yang diperoleh irisan kerucut, tapi ia tidak bisa menemukan rumus untuk akar. Sebuah terjemahan Latin dari Al-Khawarizmi's Aljabar muncul pada abad 12. Pada awal abad ke-13, matematikawan besar Italia Leonardo fibonacci dicapai pendekatan dekat dengan solusi dari persamaan kubik x^3 + 2 x^2 + cx = d. Karena fibonacci telah melakukan perjalanan di tanah Islam, ia mungkin digunakan metode Arab aproksimasi.

Pada awal abad ke-16, matematikawan Italia Scipione del Ferro , Niccolo Tartaglia , dan Gerolamo Cardano memecahkan persamaan kubik umum dalam hal konstanta muncul dalam persamaan. Teman-murid Cardano, Ludovico Ferrari, segera menemukan solusi yang tepat untuk persamaan derajat keempat (lihatpersamaan quartic ), dan sebagai hasilnya, matematikawan untuk beberapa abad berikutnya mencoba untuk menemukan rumus untuk akar dari persamaan derajat lima, atau lebih tinggi . Pada awal abad ke-19, bagaimanapun, matematikawan Norwegia Niels Abel dan matematikawan Perancis Evariste Galoismembuktikan bahwa tidak ada formula seperti itu tidak ada.

Sebuah perkembangan penting dalam aljabar pada abad ke-16 adalah pengenalan simbol untuk diketahui dan untuk kekuatan aljabar dan operasi. Sebagai hasil dari perkembangan ini, Buku III dari géometrie La (1637), yang ditulis oleh filsuf Perancis dan matematikawan Rene Descartes , tampak seperti teks aljabar modern. kontribusi paling signifikan Descartes untuk matematika, bagaimanapun, adalah penemuan geometri analitik , yang mengurangi pemecahan masalah geometri untuk solusi yang aljabar. teks geometri Nya juga mengandung esensi kursus pada teori persamaan , termasuk apa yang disebut pemerintahannya tanda untuk menghitung jumlah dari apa yang disebut Descartes (positif) dan "salah" (negatif) "benar" akar dari suatu persamaan. Pekerjaan dilanjutkan melalui abad ke-18 pada teori persamaan, tetapi tidak sampai 1799 adalah bukti diterbitkan, oleh ahli matematika Jerman Carl Friedrich Gauss , yang menunjukkan bahwa himpunaniap persamaan polinomial himpunanidaknya memiliki satu akar dalam bidang kompleks (lihat Nomor: Bilangan Kompleks ) .

Pada saat Gauss, aljabar telah memasuki fase modern. Perhatian bergeser dari memecahkan persamaan polinomial untuk mempelajari struktur sistem matematis abstrak yang aksioma didasarkan pada perilaku obyek matematika, seperti bilangan kompleks , yang ditemui ketika belajar matematika persamaan polinomial.Dua contoh dari sistem tersebut kelompok aljabar (lihat Group) dan quaternions , yang berbagi sifat-sifat sistem bilangan tetapi juga berangkat dari mereka dengan cara-cara penting. Grup dimulai sebagai sistem permutasi dan kombinasi dari akar polinomial, tetapi mereka menjadi salah satu konsep pemersatu utama matematika abad ke-19. Kontribusi penting untuk mempelajari mereka dibuat oleh Galois matematikawan Perancis dan Augustin Cauchy , matematikawan Inggris Arthur Cayley, dan matematikawan Norwegia Niels Abel dan Lie Sophus. Quaternions ditemukan oleh ahli matematika dan astronomi Inggris, William Rowan Hamilton , yang memperpanjang aritmatika kompleks nomor ke quaternions sementara bilangan kompleks adalah bentuk a + bi, quaternions berada diluar dari form a + bi + cj + dk.

Segera himpunanelah itu penemuan Hamilton, matematikawan Jerman Hermann Grassmann mulai menyelidiki vektor. Meskipun karakter abstrak, fisikawan Amerika JW Gibbs diakui dalam aljabar vektor sistem utilitas besar bagi fisikawan, seperti Hamilton mengakui kegunaan quaternions. Pengaruh luas dari pendekatan abstrak yang dipimpin George Boole untuk menulis Hukum Thought (1854), perawatan aljabar dasar logika . Sejak saat itu, aljabar modern juga disebut abstrak aljabar.

Sumber :

http://www.algebra.com/algebra/about/history/

Sejarah Teori Himpunan

Matematikawan telah menggunakan himpunan sejak awal subjek. Misalnya, ahli matematika Yunani mendefinisikan lingkaran sebagai himpunan poin pada jarak r tetap dari titik tetap P. Namun, konsep 'himpunan tak terhingga' & terbatas 'himpunan menghindari ahli matematika dan filsuf selama berabad-abad. Misalnya, pikiran Hindu dipahami tak terbatas dalam mereka Ishavasy teks kitab suci-opanishad sebagai berikut: "Keseluruhan ada di sana. Keseluruhan berada di sini. Dari lubang imanates keseluruhan. Menyingkirkan keseluruhan dari keseluruhan, apa tersisa masih satu Utuh”. Phythagoras (~ 585-500 SM), seorang matematikawan Yunani, berhubungan baik dan jahat dengan terbatas dan tidak terbatas, masing-masing. Aristoteles (384-322 SM) mengatakan, "tak terbatas tidak sempurna, belum selesai dan karena itu, tak terpikirkan, itu tak berbentuk dan bingung." Kaisar Romawi dan filsuf Marcus Aqarchus (121-180 M) mengatakan tak terhingga adalah sebuah teluk yg tak dpt diduga, di mana segala sesuatu lenyap "filsuf. Inggris Thomas Hobbes (1588-1679) berkata," Ketika kita mengatakan sesuatu adalah tak terbatas, kami hanya menandakan bahwa kita tidak bisa hamil berakhir dan batas-batas hal yang bernama ".

Ahli matematika bekerja, serta jalan, jarang berkaitan dengan pertanyaan unusal: apa angka? Namun upaya untuk menjawab pertanyaan ini justru telah mendorong banyak pekerjaan oleh matematikawan dan filsuf di dasar matematika selama seratus tahun terakhir. Karakterisasi bilangan bulat, bilangan rasional dan bilangan real telah menjadi masalah klasik pusat untuk penelitian dari Weierstrass, Dedekind, Kronecker, Frege, Peano, Russel, Whitehead, Brouwer, dan lain-lain. Peneliti dari Georg Cantor sekitar 1870 dalam teori dengan rangkaian tanpa batas dan topik terkait analisis memberikan arah baru bagi perkembangan teori himpunan. Cantor, yang biasanya dianggap sebagai pendiri teori himpunan sebagai suatu disiplin matematika, dipimpin oleh karyanya menjadi pertimbangan himpunan tak terbatas atau kelas karakter sewenang-wenang.

Namun, hasil Cantor tidak segera diterima oleh orang-orang sejamannya. Juga, ditemukan bahwa definisi tentang menetapkan mengarah ke kontradiksi dan paradoks logis. Yang paling terkenal di kalangan ini diberikan pada 1918 oleh Bertrand Russell (1872-1970), sekarang dikenal sebagai's paradoks Russell.

Dalam upaya untuk menyelesaikan paradoks ini, reaksi pertama matematikawan adalah untuk 'axiomatize' Teori himpunan intuitif's Cantor. Axiomatization berarti sebagai berikut: dimulai dengan satu himpunan pernyataan jelas disebut aksioma, kebenaran yang diasumsikan, seseorang dapat menyimpulkan semua sisa proposisi teori dari aksioma menggunakan aksioma inferensi logis. Russell dan Alfred North Whitehead (1861-1974) pada tahun 1903 mengusulkan teori aksiomatik himpunan dalam tiga-volume kerja mereka yang disebut Principia Matematikawan merasa canggung untuk digunakan.Sebuah Teori himpunan aksiomatik yang dapat dikerjakan dan logistik sepenuhnya diberikan pada tahun 1908 oleh Ernst Zermello (1871-1953). wa ini meningkat pada tahun 1921 oleh Fraenkel A. Ibrahim (1891-1965) dan T. Skolem (1887-1963) dan sekarang dikenal sebagai 'Zermello-Frankel (ZF) teori aksiomatik-himpunan.

Sumber :

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Beginnings_of_set_theory.html
http://en.wikipedia.org/wiki/Set_theory
http://www.mathresource.iitb.ac.in/project/history.htm
http://stanford.library.usyd.edu.au/entries/set-theory/